. UNCLASSIFIED Ay

SSeCURITY CT_ASS.S-JATION DF “-% salt .
] REPORT DOCUMENTATION PAGE m FILE @

‘te. BSTR:CTIVE MARKINGS

AD—A219 280 3 OISTRIBUTICH s AVAILABILITY OF KEPORT
Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) § MONITORING ORGANIZATION REPORT NUMBER(S@

LIDS=P~1945 :\ ;‘"S
6a. NAME OF PERFORMING ORGANIZATION 60. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION h

(If applicable)
Lab. for Inf. and Dec. Systems Office of Naval Researc \/QQ‘? :
6¢<. ADDRESS (City, Stare, and ZIP Code) 7h. ADDRESS (City, State, and 2IP Code) < o
Massachsuetts Institute of Technology G
Room 35-406/LIDS 800 N Quincy Street

Cambridge, MA 02139 Arlington, VA 22217-50
Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT NSTRUMENT IDENTIFICATION NUMB _.'
RGANIZATION If licabie
° f avplicabie) NO0O14~84-K-0519
B¢. ADDRESS (City, State, and ZIP Coge) 10. SOURCE OF FUNDING NUMBERS
af PROGRAM PROIECT TASK WORK UNIT
' ELEMENT NO NO. NO ACCESSION NG.

NR-649-003 |

i 15, TITLE (include Securtty Classification)
AN ASYMPLOTIC RESULT FOR THE MULTI-STAGE WEAPON-TARGEYT ALLOCATION PROBLEM

—

Patrick A, Hosein and Michael Athans

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) [|1S. PAGE COUNT
Techncial FROM _ tO__ February 1994 18

16. SUPPLEMENTARY NOTATION

17. CUSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and 1dentify by biock number)
FIELD GROUP SUB-GROUP

/ 9. ABSTRACT We consider a n;ulti~stage version of the Weapon-Target Allocation problem. This problem

models the following battle scenario. The offense launches a number of weapons (the targets)
which are aimed at assets of the defease. These targets are assigned values by the defense. The
defense has a number of (non-reusable) defensive weapons each of which can engage at moet one
target. The outcome of such an engagement is stochastic. In each stage of the engagement the
defense observes the cutcomes of the assignments made in the previous stage before assigniny
a subset of the remaining weapons in the present siage. The objective is to assign weapons to
targeis so as to minimize the total expected value of the targets which survive all siages.

In this paper we Will’assume that all targets have & value of unity and that the engagement
of a target by a weapon depends orly on the stage number. If we assume that the number of
weapons used in each stage is linearly dependent on the number of targets vhen, we @ilf show
that, as the number of targets approaches infinity, the solution to this stochastic problem can
] be obtained by solving a reiated deterministic one. - -

I
] 20 DISTRIBUTION / A JAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFILATION
% T3 UNCLASSIFIED/UNUMITED [ Same AS RPT CJ o7IC UsERs unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPMONE ({incluge area Coae) | 22¢. OFFICE SYMBOL
Dr. N. Gerr : (202)696-4321 | Code 11115P
DO FORM 1473, samar 83 APR echition may pe used until exhaustad SECURITY CLASSIFICATION OF THIS PAGE

Aii Cther egitions are onsolete
.S, Covernvment Prerang Otfies: 1938--5G7 047

|
|
| 90 03 14 057 /




FEBRUARY 1990 LIDS~-P-1945

An Asymptotic Result for the Multi-Stage Weapon-Target
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4 Abstract ’/

We consider a multi-stage version of the Weapon-Targct Allocation problem. This problem
models the following battle scenario. The offense launches a aumber of weapons (the targets)
" g which are aimed at assets of the defense. These targets are assigned values by the defense. The

- defense has a number of (non-reusable) defensive weapons each of which can engage at imost one
target. The cutcome of such an engagement is stochastic. In »ach stage of the engagement the
] defense observes the outcomes of the assignments made in the previous stage before assigning
' a subset of the remaining weapons in the present stage. The objective is to assign weapons to
targets so as to minimize the total expected value of the targets which survive all stages.

In this paper we will assume that al! targets have a value of urity and that the engagement
w
| of a target by a weapon depends ouly on the stage nuniber. If we assume that the number of
- weapons used in each stage is linearly dependent on the number of targets then, we will show
] that, as the number of targets approaches infinity, the selution to this stochastic problem can
[ be obtained by solving a related deterministic one.

1 Introduction

Hl

The Weapon-Target Allocation (WTA) problem is used to model the defense of assets in a military

conflict. The offense (the enemy) launches a number of offensive weapons which are aimed at

RSN Y

valuable assets of the defense. Since these weapons will be the targets of the defense’s weapons,

T

| henceforth we will call them targets. The defense has a number of defensive weapons with which
te engage these incoming targets. The engagement of a target by a weapon will be modeled as

a stochastic event. A probability, called a kill probability, will be assigned to each weapon-target

cc

pair. This will be the probability that the weapon destroys the target if it is assign.ed to it. We

- l *This research was conducted ai the MIT Laboratory for Information and Decision Systems with partial support
provided by the Joint Directors of Laboratories under contract ONR/N00014-85-K-0752 and by the Office of Naval
Research under coatract ONR/N00014-84-K-6519.
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will asrume that the engagement of a weapon-target pair is independent of all other weapons and

targets. Note that a particular target may be engaged by more than one weapon (Salvo attacks).

Values are assigned to the incoming targets and the objective is to assign defensive weapons to these

targets 5o as to minimize the expected total value of the targets which survive after all engagements.

» Ard

This cerresponds to what is known as a weishted subtractive defense.!

S

s Jnthe multi-stage version, weapons are allocated in stages with the assumption that the out-

comes (i.e: survival or destruction of each target) of the weapon-target engagements of the previous

N e 4+ A o

-

pooonT

v "-"

stage ‘dre observed (perfectly) before assignments for the present stage are made. We will assume

[ T

.t:hatr ga,ch_weapon' can be used only once.

*** Sotie important properties of the multi-stage WTA problem are that it is (a) NP-Complete

) t
(i‘e. one jmust essentially resort to complete enumeration to find the optimal solution; see (7]),

{l) Discrete {fractional weapon assignments are not allowed), (¢) Dynamic (the results of previ-

ous engagements are observed before making present assignments), (d) Nonlirear (the objective
function is convex), (e) Stechastic (weapon-target engagements are modeled as stochastic events)
and (f) Large-Scule (the number of weapons and targets is large, making enumeration techniques
impractical). These properties of the problem rule out any hope of obtaining efficient optimal
aigorithms.

Several papers have been written on the single stage (or static) version of this problem. In
(3], denBroeder et al. consider the special static case in which the kill probability of a weapon-
target pair is independent of the weapon (i.e. a single class of weapons). They present an optimal
algorithm for solving this version of the problem. Kattar implemented this algorithm and presents
some numerical results in [6). Matlin [8] and Eckler and Burr [4] give reviews of the material on
weapons allocation problems. However, in these studies, very little emphasis is given to the dynamic
allocation of weapons which is the main focus of our research. A major result, obtained by Lloyd
and Witsenhausen [7), is that the single stage version of problem is NP-Complete. What this means
is that the computation time of any optimal algorithm for the problem will grow exponentiaily with
the size of the problem. In conclusion, we have found that the open literature on the multi-stage

version of the WTA problem is scant. Furthermore, the literature which addresses this problem

1The Weapon-Target allocation problem is but one of the many problems that are addressed in the field of
Command snd Contro! (C?) theory. The perspectives paper by Athans {1] presents some of the other basic problems.
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contains few analytical results because of the difficulty of the problem.
2 Problem Definition

The multi-stage version of the WTA Problem consists of a number of time stages. The defense is
allowed to observe the outcomes of all engagements of the previous time stage before assigning and
commiting weapons for the present stage. This is called a “shoot-look-shoot-...” strategy since the
defense is alternating between shooting its weapons and observing (looking) at the outcomes.

We assume that in the initial stage the defense chooses a subset of its weapons and assigns them
to targets. These weapons are then committed simultaneously. In the second stage the outcomes
(i.e. the survival or destruction of each engaged target) of all of the engagements of the weapons
committed in the first stuge are observed. Based on this observation, the defense chooses a subset of
the remairing weapons and assigns them to the targets which survived the stage 1 engagements. In
the third stage the outcomes of the engagements of the weapons committed in stage 2 are observed.
Based on this observation, a subset of the remaining weapons is chosen and assigned to the set of
surviving targets. This process is repeated for all time stages. In each stage the weapons are chosen
and assigned with the objective of minimizing the total expected value of the surviving targets at
the end of the final stage.

Note that in each stage the problem is re-solved based on the outcomes of the previous stage.
This implies that in each stage one is interested in obtaining (a) the subset .f eapons which are
to be fired in that stage and (b) the optimal assignment of these weapons to targets. Note that
in computing the optimal assignment for the present stage one must assume that in all subsequent
stages an optimal assignment will be used. If this is not done then the expected cost for the
problem could be improved by doing so. This is known as the Principle of Optimality in dynamic
programming [2]. We will therefore implicitly assume that optimal assignments will be used in all
subsequent stages.

Note that the only information required to compute the optimal assignments in a stage is the
set of surviving targets, the set of remaining weapons and the number of stages left. All other
information of previous stages is not rele ant. Therefore at each stage the problem can be restated
as one in which the present stage is the first stage of the restated problem. The initial set of targets

for this problem is the set of surviving targets and the initial set of weapons is ik set of remaining
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weapons. In other words the problem to be solved at each stage has the same form as the statement
of the problem for stage 1. Therefore, although we will only consider the T-stage problem and sclve
for the optimal assignments of the first stage, the same method can be used to solve for the optimal
assignments of the remaining stages.

In our notation we will index the parameters in each stage with the stage number. Therefore
for a T-stage problem the parameters in stage 1 will have an index of 1 waile those of the final

stage will have an index of 7. The notation to be used is as foliows:

N % the number of targets (offense weaypons),

M ¥ the number of defense weapons,

T % the number of time stages,

Vi def the value of target i, 1=1,2,...,N,

p.-_,~(t)d-_'.’-f the kill probability of weapon j on target { in stage ¢,

i=1,2,..., /N, J=12,..., M,

¢i;(t)= 1 - pi;(t), the corresponding survival probability.

The decision variables will be denoted by:

i = 1 if weapon j is assigned to target ¢ in stage 1
Y71 0 otherwise.

The target state of the system in stage 2 will be defined as the set of targets which survive stage 1.

This state will be denoted by an N-dimensional binary vector # € {0,1}" and represented by

wo=d ! if target i survives stage 1,
! 0 if target 1 is destroyed in stage 1.

The weapon state of the system in stage 2 will be defined as the set of available weapons after stage
1. This state will be denoted by an M-dimensional binary vector € {0, 1} and represented by

w: = (1 if weapon j was not used in stage 1,
771 0 if weapon j was used in stage 1.

Given a first stage assignment, {z;;}, the target state at the start of the second stage is an
N-dimensional random vector. The probability that u; is 1 is the probability that target i survives
the first stage. The probability that u; is 0 is the probability that target i is destroyed in the first
stage. The distribution of the random variable u; is therefore given by:

M M
Prlu; = k] = k [L(1 - pis(1))® + 1 - &) {1 - T =~ piitayy } ’ W

j=1 j=1




for k== 0,1, i=1,2,...,N.

Equation 1 will be called the target state evolution of the system.
The weapon state also evolves with time. This evolution is deterministic and depends on the

assignments made in the first stage. The evolution is given by:
N
wi=1-) zj Jj=12,...,M. (2)
=1

This simply says that weapon j is available in the second stage if and only if it is not used in the
first stage. Equation 2 will ba called the weapon state evolution of the system.
We will let F3(#,w) denote the optimal cost of a T — 1 stage problem with initial target state
# and initial weapon state w. Note that this problem will be defined in terms of optimal costs for
T — 2-stage problems, etc. Eventually the (T — (T - 1) or single stage problem will be defined in
terms of optimal costs for 0-stage problems. The optimal cost of a 0-stage problem will be defined
as: N
F (i) = Y Vi (3)
i=

In other words, the cost is simply the total value of the targets which survived tke final stage.

Problem 2.1 The Multi-Stage Weapon-Target Allocation prodlem (MW TA) can now be stated as:
min £ = Z Pr(@ = 3] F} (&, 0)
(=4, Se{0,1}N

subject to  z; € {0,1}, t=12,....N 7=12,...,M,

N
with w;=1- Z:ti,.

§=1

The cobjective function is the sum, over all possible stage 2 target states, of the probability of
occurrence of that state times the optimal cost given that state. The probability distributic of the
target state was given in 1. Ncte that the distribution of the stage 2 target staie and the stage 2
weapon state both depend on the first stage assignment. The first constraint restricts each weapon
to be assigned at most once in the first stage. The second constraint is due to the weapon state

avolution.
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This problem is difficult both analytically and computationally. This can be illustrated by at-
tempting to use a straightforward dynamic programming approach to the problem. Let us consider
a two stage problem. 1he number of possible weapon subsets that can be chosen in the first stage
is 2, If m; weapons are used in stage 1 the number of possible assignments that must be checked
is N™_ If N of the NV targets are engaged in the first stage the number of possible outcomes is 2N,
I£ iV of the N targets survive stage 1 and m; weapons are available in stage 2 then the aumber
of assignments that must be checked to obtain the optimal cost for this outcome is N™2, These
numbers show the enormous number of computations that will be required if a straightforward
dynamic programming approach is used. Note that to simply evaluate the expected value of a first

stage assignmeat requires a tremendous computational effort.
3 The Single-Stage Problem

In this section we will present the special case of the problem in which there is only one stage. This
problem hes been well studied in the literature. It has been shown by Lloyd and Witsenhausen (7]
to be NP-Complete in general. Therefore, ouly sub-optimal algorithms have been proposed for its
solution.

We will see in the next subsection tha* if we assume that the kill probabilities do not depend
on the weapous (i.e. we have a single class of weapons) then the resuiting problem can be solved
hy a polynomial ¢ime algorithm. This implies that the basic difficulty of the problem stems from
the fact that there are multiple types of weapons. The problem is alse difficult because of the

non-linearity of the objective function.
3.1 Spezial Cases of the Single-Stage Problem

Two optimal slgorithms exist for solving this problem under the additional assumpticn that the kill
probabilities are independent of the weapons, i.e. p;j = p;. This assumption is valid if the defense
has a single type of weapon and all weapons are located in the same area so that the geometry and
‘titae of intercept is the same for all. denBroeder et al. [3] proposed the first alzorithm for solving
this special case of the problem. Their’s is essentially a greedy algorithm in which weapons are
assigned sequentially to the target for which the corresponding decrease in the cost is maximum.

This algorithm is usually referred to as a Maximum Marginal Return algorithm. The second
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algorithm for solving the problem is a Local Search algorith: 1. The algorithm starts with any
feasible solution and searches locally for a better solution until the optimal one is found. Proof of
optimality of this algorithm can be found in (5).

In the previous paragraph we had assumed that the kill probability is independent of the
weapons. In this paragraph we will assume that for each weapon-target pair the weapon can either
be assigned to the target or it cannot be assigned to the target (i.e. each weapon can only reach
some of the targets). If it can be assigned to the target then we will assume that the kill probability
of the pair is only dependent on the target. In other words we are assuming tiat the kill probability
of a weapon-target pair is either 0 or some target dependent value p; (i.e p;; € {0,p;}). This problem
can be re-formulated as a Linear Minimum Cost Network Flow problem. Any algorithm for solving
such problems can then be used to tind the optimal solution.

Another special case is that in which each target can be assigned at most one weapon. This
problem can be re-formulated as a Transportation problem. Any algorithm for solving Transporta-

tion problems can then be used to find the optimal solution.

4 Unit Valued Targets and Stage Dependent Kill Probabilities

In this section we will study the effect of stage dependent kill probabilities p(t) on the optimal
assignment. We will assume that the targets all have a value of unity and that the kill probabilities
p{t) are independent of the weapons and the targets, We were not able to obtain an analytical
solutien to this problem even for the case of iwo targets. However, we were able to obtain results
for the limiting case, as the number of targets goes to infinity. We will first present some properties

of the optimal solution.

Theorem 4.1 Consider the Multi-Stage WTA problem in which there are T' stages, N unit-valued
targets, stage dependent kill probabilities p(t), and M weapons. The optimal strategy has the prop-
erty that the weapons to be used at each stage are spread as evenly as possible among the surviving

targets.

Proof: See the thesis by Hosein [5]. m
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The above result simplifies the problem to be solved since we can use the number of weapons
to be used at each stage, {denoted by m;), as the decision variable and optimize over this variable.
Given the optimal values of m,, the optimal assignment can then be obtained by spreading these
weapons evenly among the targets. In the case of T = 2 the resulting problem is a one dimensional
optimization problem since my + m; = M. Intutively we would expect the expected cost to be a
unimodal function with respect to the number of weapons used in stage 1. However, this is not the

case as we see in the following two-stage example.

=i
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m,
Figure 1: A two-stage example in which the expected cost as a function of the number of first stage
weapons, Fi(m,), has multiple local minima.

Let us choose my, the number of first stage weapons, as the independent variable. We will
write the expected value if m; weapons are used in stage 1 and M — m; weapons are used in
stage 2 by Fi(m1). The optimal solution can then be obtained by minimizing Fi(m,) over the
set {0,1,...,M}. f Fi(m;) was 1 unimodal function of m; then this minimization could be done
efficiently by using a local search algorithm. Unfortunately, this is not the case as can be seen in the
following example. Consider the problem in which T' = 2, A = 14, N = 3 and p(1) = p(2) = 0.9.
In Figure 1 we have plotted log Fy(my) versus m;. Here we find an example in which there are

multiple minima. This implies that the problem is difficult since one essentially has to do a global

search to obtain the global minimum.
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Note that we used a log scale because the variations near the global minimum are so small that,
with a lipear scale, the function “appears” to have a single minimum. This suggests that for all
practical purposes any of the local minima will suffice. A 1ocal minimum can easily be obtained
by 2 local search algorithm (i.e. repeatedly increase or decrease my, if doing so decreases the cost,

until any change in m, results in an increase in the cost.
4.1 The Limit of an Infinite Number of Targets

In this subsection we will consider what happens for very large numbers of unit-valued targets. We
will keep the ratio of weapons to targets fixed and solve the problem in the limit as the number
of targets goes to infinity. We will find that, in the limit, the problem can be considered as a
deterministic one in which the number of targets in a stage is the expected number of targets which
survive the previous stage.

Let us introdvce the variable x, = R. This is the number of weapons reserved for stage ¢ per

initial number of targets. We will also define the vector &7 € R for 1 <t < T by

g

¢t = [KeyKegty oo "‘T]T~

Note that the values of x; may not be optimal for the problem. We will address the question of
finding optimal values for x, in the following subsection. By theorem 4.1 we know that the weapons
to be used in each stage should be spread evenly among the surviving targets. The expected cost
of the T-stage problem with N targets and in which m¢ = 5, N weapons are used in stage ¢t will be
denoted by F1(N,R1). Let a denote the expected fraction, of the initial numbe- of targets, which
survive stage 1 i.e.

= (1= (s = [m))p())(1 = p(1))Lm]. (4)
Note that a is independent of N. Consider the case of the single-stage problem (i.e. T =1). We

have
A 2= (- L DD = ()L,

Taking the limit as NV goes to infinity on both sides we get

pm ﬂ%fll = (1= (51 - s ))P(2)1 - p(2)H) = @ (5)

In other words, for the single-stage problem, if the weapon to target ratic is kept fixed then the

expected fraction of targets which survive is the same for all values of N. Thiz will also be the
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value in the limit as the number of targets goes to infinity. We will now show how the limit of this
ratio can be obtained for more than one stages. The limit for the T-stage problem will be obtained
in terms of the limit for the T — 1 stage problem, etc. Since the limit for the case T = 1 is well
defined then the limit for the two-stage problem is well defined etc. The T-stage limit is therefore

well defined. The main result will now be presented.

Theorem 4.2 Consider the T-stage problem with N unit valued targets, M = xN weapons and
stage dependent kill probabilities p(t). Assune that the number of weapons to be used in stage t is
given by m; = 5, N, where x; € [0,«] is a fired constant which may be different for each stage. We

then have that

RN A) L B(N,Ry/a)
Nh-gloo M =@ l‘}!lnoo N ’ (6)

where a i given by cquation 4.

Proof: Let N, represent the number of targets which survive stage 1. N, is a random variable. If
Ky is an integer then it is a binomial random variable; otherwise, its distribution can be obtained
by the convolution of two binomial distributions. The mean and variance of this distribution is
given by:

E[Nz] = Nz = GN,

Var[N,] = 0% = AN,
where

8= g1 = (1 = s (L= g(E) + (k1 = {1 ])a(1)(2 - g

Note that 3 is independent of N. For any g > 0 we have

R(N,&) = Pr{(|Nz- N 2 uN)E[Fa(Na, Ra)l|Ny = Na| > uN))

+ Pr({N3 ~ Na| < uN)E[Fy Mo, B)|[N2 ~ Na| < pN)). (V)

By Ckebyshev’s Inequality we know that

_ ol B
P - D = e = ] — s,
(|N2= Ny <pN)2 1 AN 1 2iN (8)

Since F3(N3,Rz2) is a monotonically increasing function of N then

E{Fy(N2,Ra)|| N2 — Na| < uN) € Fa(Na2 + N, &), (9)

10




and

E[F3(N3,%2)||N2 = Ny| < pN| 2 Fo(Nz — N, Ry), (10)

and also
E[F3(N3,%2)l|N2 ~ N3l 2 uN) < F(N,Ra), (11)

Using 8 9, 10 and 11 in 7 we obtain

{1- ;%,—)F:(N: - uN, &) € Fi(N,R7) € “—f’ﬁle(N.Ee)l + F(Ny+uN.R2)  (12)
Dividing by N and taking the limit as N goes to infinity we obtain
. im [2N2-pN. %) < lim f_lg'/,_nx)_s im (N2 +uN.Ra)
N+co N N =00 N N—co N
Using the fact that N3 = N and taking g arbitrarily close to 0 we obtain
4. . R(N,&1) _ .. R(aN,R)
o Nh-?]oo N - h}l—ronoo N ’
=4
; Using a change of variables we finally obtain
e  R(NA) _ o B(N,Rafe)
A}l-[onuo N =a IJl—l'noo N '
| e This completes the proof. ®
|. .‘
]
. q,} Note that the theorem gives the limit of the T-stage probiem in terms of the limit for a (T’ - 1)-

stage problem. The latter can be expressed in terms of the limit of a (T ~ 2)-stage problem etc.

L
N

¥

The limit for the case T" = 1 is given in equation §. This limit provides us with a lower bound for

")

finite values of N. This result is given in the next theorem.

L i

Theorem 4.3 Consider the T-stage problem with N unit valued targets, M = xN weapons and

| stage dependent kill probabilities p(t). Assume that the number of weapons to be used in stage t is

' given by m¢ = iy N, where k¢ € [0,x] is a fized constant which may be different for each stage. We
Sé then have that

2. 2'

: ] RA(N,7)2 N lim (N, %) (13)

}.i N-sco
i

i1
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Proof: Let k be any positive integer. Consider the problem with kN targets and in which my = kx¢N
weapons are used in staget. Let Fj(kN,K;) denote the optimal cost for this problem. A sub-coptimal
solution for this problem is the following. Split the problem into k subproblems. Each of these
subproblems has N targets and uses m; = kN weapons in each stage. The optimal cost for the

problem under this restriction is given by kFy (N, &;). Since this solution is suboptimal we have:
Fy(kN,R) < kR (N,Ry).

Dividing both sides by kN and taking the limit as k goes to infinity we have

Fi(N,&;) . F1(kN,R)  R(N,R)
PO Sul A2 A, N ———— =i ————— L
N khm N = lim

The result 13 now follows. m

Theorem 4.3 provides us with a lower bound on the optimal cost fo; the problem with finite

values of N. Theorem 4.2 is more easily understood if we look at some examples.

Example 1
Suppose that x = 2,x; = 0.5,k = 1.5 and p = 0.6. In other words the defense has 2N weapons,

N/2 weapons are used in stage 1 and the remainder are used in stage 2. The expected fraction of

targets which survive stage 1 is given by
1
a = a[(l —p) + 1] = 0.7.

Therefore the expected value in stage 2 given that the expected number of targets survive stage 1
is given by:
Fy(a,x2) = F3(0.7,1.5) = [(1 - p)® + 6(1 ~ p)?]/10 = 0.1024.

Note that we had to scale the number of weapons and the number of targets by a factor of 10 so

that there are an integral number of each. If we; >w use the theorem we obtain:

lim F1(N,[.5,1.5])

R N = 0.1024.

In words this says the following. For very large N, if 25% of the weapons are used in stage 1

then approximately 10% of the targets will survive both stages. For comparison, if a single stage

12
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strategy is used then 16% of the targets will survive. If we consider the case of two targets, N = 2,

then 13.12% of the targets will survive both stages.

Example 2
Consider the 3 stage problem with x = 3,k; = k2 = k3 = 1, and p = 0.5. In the limit the expected
fraction of targets which survive stage 1is % The expected fraction which survive stage 2 is % and

the expected fraction which survives stage 3 is 5}1 Therefore,

lim Fl(Nv [1»191])

— o911
Neawow N =2 ’

Let us now consider a case with stage dependent kill probabilities.

Example 3
Suppose that & = {1.5,1,.5' and that p(1) = .6,p(2) = .5,p(3) = .4. The expected fraction of

targets which survive stage 1 is given by
a = 0.5((1 - p(1)) + (1 - p(1))*] = 0.28.

The expected fraction which survives stage 2 is the solution to a static problem with 0.28 targets
and 1 weapon. To find the limit for this problem we find the cost for the case of 7 targets and 25

weapons (i.e. multiply by 25) and divide the cost by 25. We obtain
a = [4(1 - p(1)*) + 3(1 - p(1))%}/25 = 0.025.

The expected fraction which survives the final stage is the solution to a static problem with 0.025

targets and .5 weapons. Multiplying the parameters by 40 etc. we obtain
a=(1-p(2)%/40=91x10"".

Therefore in the limit as the number of targets goes to infinity, the expected fraction of the initial

number of targets which survives all stages is 9.1 x 10~7.

Theorem 4.2 is important because it allows us to corapnte approximate costs for the case of
large N. This approximation is typically zood for values of N greater than 100. Theorem 4.3 says

that this limit provides a lower bound on the cost for finite values of N.

13
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In words theorem 4.2 says the following. Let us suppose that the number of weapons reserved
for a stage is linearly dependent on the initial number of targ=ts N. Therefore, as we increase
the number of targets, the number of weapons in each stage will increase at the same rate. As
we increase the number of targets, the expected number of targets which survive the final stage
will also increase. Let us instead consider the ratio of the expected number of surviving targets
and the initial number of targets. The theorem says that we can compute this ratic in the limit
of an infinite number of targets N by solving a relatec deterministic problem. This deterministic
problem is obtained as follows. Let us suppose that =t each stage the number of surviving targets is
equal to the ezpected number of surviving targets. Pick the initial nnmber of targets N so that the
expected number of surviving targets at each stage is integral. Using this value of N we evaluate
the expected surviving number of targets at the end of the final stage of the deterministic problem
in which, at each stage the expected number of surviving targets survive the previous stage. The
ratio of the expected number of surviving targets for this problem and the initial number of targets
N is the same as the ratio, in the limit as N goes to infinity, of the expected number of surviving
targets and the initial number of targets. Note that the former ratio is obtained by solving a
deterministic prc Hlem while the latter ratio must be obtained by solving a stochastic problem for
an infinite number of targets. This limit provides a lower bound for the ratio for finite values of N.
Furthermore, it provides ai approximate answer for large values of N.

Let us take the following example. Consider the problem of two stages T = 2 with M = 2N
weapons. N weapons are used in each of the stages (i.e. § = {1,1]). We computed the exact value

of the ratio ALULR

for N = 10,20,...,150, and also in the limit as N goes to infirity. In figure 2
we have plotted :his ratio for finite values of N as well as the ratio in the limit of infinite N. In

this case we used a second stage kill probability of p(2) = 0.7 and a first stage kill probability of

-

p(1) = 0.6. Additional exampies of this kind may be found ia {§).

4.2 Optimal Number of First-Stage Weapons for a Two-Stage problem with a
Large Number of Targets

Note that, in the discussion in the previous subsection, the number of weapons to be used in each

stage was fixed. In this section we wiil find optimal values for & as IV goes to infinity. This will

give us a good approximation to the optimal solution for large values of V.
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Figure 2: The ratio of the expected two-stage cost and the initial number of targets N vs. N for
(1) = 0.6,1(2) = 0.7; N weapons are used in each stage.

We wil! only consider the two-stage case, T = 2. The optimization could also be attempted for
T > 2, but it is doubtful whether ore can find an analytical solution for such cases. For the case
T = 2 we know that k3 = kK — k; since all remaining weapons are used in the second stage. We
- therefore have a one dimensional optimization problem. We will let x; be the free variable. The

optimization problem can be stated as:
min Fy(e, x - K1) (14)

subject to  x; € [0,x]

where

B a=[1-(x

|
el

E SIS
S

The function F3(n,x3) is given by:

X "
g Fa(a, k) = [a = p(2)(r2 = al T ]e(2)V 4.
This function is difficult to minimize. However, if the integrality constraint is relaxed, then the

expected cost is given by aq(2):-"., Since this is a lower bound for the non-relaxed preblem, then

! Fa(ayng) 2 ag(2)<. (15)
|
I




This states that the solution cbtained by :llowing fractional assignments in the second stage is a
lower bound to the solution in which only integral assignments are allowed. Note that if 52 is a
non-negativ: integer then equality holds in expression 15. Therefore, if the solution to the problem
using the lower bound as the objective function is a multiple of a then it is optimal for the true
problem.

The optimization problem using the lowar bound in 15 as the objective function can be stated

as:
min aq(2) . (16)
subject to  «; € [0,x]
where

a=[1- (k= [k ])p(1))(1 =~ p(2)ls).

Let us first consider the case x = 1. The solution is simply tha¢ all weapons should be assigned

in the stage with the higher kill probability. Therefcre,

k1 =0 for p(1)< p(2) 1

k1 =1 for p(1) 2 p(2) (18)

Let us now consider the case in which x = 2, i.e. a 2:1 weapon to target ratio. Using straight-

forward calculus one can show that the optimal values of k, are given by

R S G
=0T S TegT ) 19
. 2p(1)~1 1 -1

1O -0 2 s~ @) 2 KD (#)
. -1 i

MR - R 2 fogli - HD) @)

Note that if 1—_—},55 is a positive integer then equality holds in 15. If this is the case then &} is
optimal for problem 14. Otherwise x} is approximately optimal.

In the plot in figure 3 the vertical axis represents the kill probability in stage 1 while the
herizontal axis represents the kill probability in stage 2. In each region we have indicated the

optimal val e of m,, the number of weapons allocated in the first stage (recall that m§ = xjN) for
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Figure 3: Optimal number of first-stage weapons, mlz,)for various kill probabilities with M = 2N
weapons, in the limit of an infinite number of targets, N.
the kill probabilities in that region. For example, consider the case p(1) = 0.8. If 0 < p(2) < 0.15
then it is optimal to use all weapons in stage 1. If 0.15 < p(2) < 0.55 then the optimal number of
weapons to be used in stage 1 lies between N and 2N. If p(Z) > 0.55 then it is optimal to use half
of the weapons in stage 1.

Note that for 0.6 < p{1) < 0.9 and 0.6 < p(2) < 0.9 it is optimal to use half of the weapons
in stage 1. This implies that for the problems of interest to us (i.e. large-scale problerns with
kill probabilities greater than 0.6) it is optimal to use half of the weapons in stage 1, even if the
kill probabilities are different in each stage. This insensitivity of the optimal strategy to the kill
probabilities is very interesting. We should stress that this result is valid for large numbers of

unit-valued targets and weapons

5 Conclusions

In this paper we considered a multi-stage version of the Weapon-Target Allocaticn problem. Under
suitable assumptions we kave shown that, as the number of targets approaches infinity, the problem
can be treated as a deterministic one in which the number of targets which survive a stage equals

its expected vaiue. This result can be used to gain insight into Large-Scale versions of the more
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general problem and can also be used to provide lower bounds on the uptimal cost for problems

with a finite number of targets.
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